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ABSTRACT

This study investigated the extent to which log-linear smoothing could
imprcrve the accuracy of common-item equating by the chained equipercentile
method in small samples of examinees. Examinee response data from a 100-item
test were used to create two overlapping forms of 58 items each, with 24 items
in common. The criterion equating was a direct equipercentile equating of the
two forms in the full population of 93,283 examinees. Anchor equatings were
performed in samples of 25, 50, 100, and 200 examinees, with fifty pairs of
samples at each size level. Four equatings were performed with each pair of
samples: one based on unsmoothed distributions and three based on varying
degrees of smoothing. Smoothing reduced, by at least half, the sample size
required for a given degree of accuracy. Smoothing that preserved only two
moments of the marginal distributions resulted in equatings that failed to
capture the curvilinearity in the population equating.



Small-Sample Equating with Log-Linear Smoothing

The problem

Like other statistical operations, the equating of test scores is
subject to sampling error. When we equate test forms, the test-takers whose
scores serve as the raw material for our calculations are, in most cases, only
a sample of the population of test-takers for whom we want the equating to be
correct. If the sample is large and representative of the population, the
equating relationship in the sample is likely to be a precise estimate of the
equating relationship in the population. But if the sample is small, it may
be a very imprecise estimate. If the equating is based on an anchor design,
with a different sample of test-takers taking each of the forms to be equated,
the imprecision is compounded.

This problem -- the instability of anchor equating results in small
samples of examinees -- is a special case of the more general problem of
small-sample instability. A common approach to the problem is to use a strong
model, with only a small number of parameters to be estimated from the data.
Linear equating methods can be considered an example of this approach. For
example, the Tucker method Angoff, 1984, pp. 110-111; Petersen, et al, 1989)
uses only the means, standard deviations, and intercorrelation of the scores
on the test to be equated and the anchor test, in each sample of test-takers.
The disadvantage of linear methods is their lack of flexibility; they cannot
reproduce a curvilinear relationship between the tests to be equated. When
the equating relationship in the population is curvilinear, the results of a
linear equating may be highly inaccurate in some regions of the score range,
usually at the extremes.

Unfortunately, curvilinear equating relationships are not rare. The
same factors that make equating necessary -- a difference in the difficulty of
test forms -- tend to produce curvilinear equating relationships. Typically,
the harder form tends to spread out the scores of the stronger test-takers,
while the easier form tends to spread out the scores of the weaker test
takers. As a result, the slope of the equating relationship between the score
distributions on the two forms tends to change from the lower portion of the
score range to the higher portion.

The approach

Fortunately, linear equating is not the only way to use a strong model
in equating test scores. Another way is to use a strong model to estimate the
score distributions in the population from the distributions observed in the
samples. The estimated population distributions can then be used in place of
the observed sample distributions in computing the equating relationship. The
score distributions estimated for the population are typically much "smoother"
than those observed in the sample (i.e., the frequencies change more gradually
from one score level to the next). Therefore, the estimated distributions are
often described as "smoothed", and the process is often referred to as
ft smoothing".
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Some smoothing models offer the user a choice in the number of

parameters to be estimated from the data. Log-linear models (Holland and

Thayer, 1987) offer this kind of flexibility. The user specifies the moments

of the observed distributions to be preserved in the smoothed distributions.

The algorithm then computes the smoothest distribution that has those

specified moments.1 These models can be as strong as they need to be. If

the samples are very small, the smoothed distribution may preservc only the

mean and standard deviation of the observed distribution. If the samples are

fairly large, a larger number of moments of the observed distribution can be

preserved. In all cases, the smoothed distribution is a discrete distribution

over the same range of possible scores as the observed distribution.

This paper describes a study intended to determine the extent to which

the use of log-linear models for estimating score distributions would reduce

the number of test-takers required for equating test scores with reasonable

accuracy. The method of equating was the chained equipercentile method. This

method is the composition of two separate equipercentile equatings; each form

of the test is equated to the anchor test in the sample of test-takers taking

that form. Figure 1 describes the method graphically. This method will

produce accurate results if the equating relationship between each form and

the anchor is the same in the sample of test-takers taking that form as in the

population (i.e., the population of test-takers for which the equating
relationship is to be determined). Livingston, Dorans, and Wright (1990)

found empirically that this method (unlike some others) tended to be free from

bias when one of the samples was not representative of the population. The

disadvantage of the chained equipercentile method is its sensitivity to

sampling variability. To overcome this disadvantage, it is necessary to
replace the score distributions observed in the samples of test-takers with

better estimates of the score distributions in the population. Log-linear

models may offer a solution to this problem.

Previous studies

Of the studies that have been done, the one most directly relevant to

this investigation is by Han......m (1991). That study investigated the accuracy

of equating by a somewhat different equipercentile method, called "frequency

estimation", in which the anchor test is used as a stratifying variable in

estimating the score distributions to be equated. Hanson used two log-linear

smoothing models, as well as two other strong models (beta-binomial and beta-

compound-binomial), to smooth the score distributions before equating by the

frequency estimation equipercentile method. Hanson also equated by three

linear equating methods. He compared the results of each procedure, in
samples ranging in size from 100 to 3000, with the results of a criterion
equating that used the data from all available test-takers -- about 39,000 for

each form. (The criterion equating also used a log-linear model to smooth the

score distributions before equating.) All four smoothing methods tended to

improve the accuracy of the frequency estimation equipercentile equating. The

smoothing method that produced the best results was a log-linear smoothing

1See Rosenbaum and Thayer (1987, pp. 45-46) for a more precise statement

of the criterion by which this estimated distribution is smoothest.
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that preserved only the means, variances, skewnesses, and correlation of

observed bivariate distribueions. However, in the smaller samples, one of the

linear methods (the Tucker method) produced more accurate results than any

version ot the frequency estimation equipelzenrile equating, despite some

curvature in the criterion equating functions.

Livingston and Feryok (1987) also investigated the effect of log-linear

smoothing on equipercentile equating by frequency estimation, but with only

three replications at each sample size level. With samples of 100 and 300

test-takers, the log-linear smoothing substantially improvad the accuracy of

the equating, i.e., its agreement with the results of equating in the full

population. With samples of 1000 and 3000 test-takers, it did not.

Other studies on the use of smoothing methods in equating are less

relevant to the investigation described in this report. Fairbank (1gP7) used

a random-groups equating design, with no dnchor. His smoothing meth s

included smoothing by medians, smoothing by weighted moving averagee, and one

strong model (negative hypergeometric distribution). Kolen and Jarjoura

(1987) investigated the smoothing of the equating transformation itself,

rather than the smoothing of the distributions prior to equating.

Ihe_p_megilLAP_Igdyl_meIhod

The present study was designed to create a situation in which the

equating relationship in the population was known. The data were taken from

the responses of 93,283 high school students to the multiple-choice section of

the Advanced Placement Examination in United States History. From the 100

items in this section of the examination, we created two overlapping sub-forms

of 58 items each, with 24 items appearing in both sub-forms to serve as an

anchor for equating. The test forms were constructed to be as similar in

content as possible, while differing systematically in difficulty. The

content specifications for this examination classify the items into three

historical periods (before 1789, 1789 to 1914, 1915 to the present) and four

historical categories (social/economic, political, diplomatic,

cultural/intellectual). In each of the twelve possible cross-classifications,

we specified one-fourth of the number of items available as the number to be

common to both sub-forms. The remaining items were then divided equally

between the two sub-forms, Where the number of remaining items was not

divisible by two, one item was left out. Therefore, in each possible cross-

classification the two sub-forms contained exactly the same number of items,

and the common-item anchor test reflected that content distribution as closely

as possible. For each of the 93,283 test takers, we computed three scores: a

score on each of the two 58-item sub-forms and a score on the 24-item anchor

test. The score was simply the number of items answered correctly.2

2Although the Advanced Placement Examinations actually are scored with a

correction for guessing, we chose not to use the correction for guessing in

our study, because it introduces additional complications into the definition

of the equating transformation.

3
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The attempt to create forms that differed in difficulty was successful.
We arbitrarily labeled the more difficult of the two sub-forms "Form A" and
the less difficult sub-form "Form B". The mean raw scores in the full
population of test-takers were 29.2 items correct (50%) on Form A and 35.9
(62%) on Form B. The standard deviations were 8.7 items on Form A and 8.8 on
Form B. Thus, the difference in the mean scores was about three-fourths of a
standerd deviation. None of the 93,283 test-takers achieved the maximum
possi 7.e score of 58 items correct on Form A, and only 5 did so on Form B.

Al-:v arbitrarily, we structured the study so that Form A was to be
equated -.J., -"e.rm B. That is, we sought a transformation that would determine,
for each AxAceger score on Form A, the corresponding score (not necessarily an
integer) on Form B. To find the equating relationship of the two sub-forms in
the population, we performed a direct equipercentile equating of the score
distributions on Forms A and B in the entire population of 93,283 test-takers.
The anchor test played no part in the determination of the population
equating. The results of this direct, full-population equating served as the
criterion for evaluating the results of the equatings based on samples of
examinees.

Figure 2 shows the equating relationship of Forms A and B in the full
population. The relationship is clearly curvilinear, as might be expected
from the difference in difficulty. At the lower ability levels, Form B, the
easier form, provides finer discrimination. For example, the difference
between the 5th and 20th percentiles (of the same population) is only 6 points
on the raw score scale for the more difficult Form A (the horizontal scale in
Figure 2) but 8 points on the scale for the easier Form B (the vertical
scale). Therefore, the slope of the equating curve that transforms the Form A
scale to the Form B scale is greater than 1 in the lower portion of the range.
At the higher ability levels, Form A, the harder form, provides finer
discrimination, and the slope of the equating curve is less than 1.

We evaluated the smoothing methods by the following procedure:

1. Select a pair of samples of a specified size: 25, 50, 100, or 200 test-
takers.

2. Arbitrarily associate each sample with one of the two sub-forms. For
test-takers in the "Form A" sample, treat the score on Form B as unknown; for
test-takers in fhe "Form B" sample, treat the score on Form A as unknown.

3. For each sample, smooth the joint distribution of scorvs on the sub-form
and the anchor test. Pe.eform three smoothings of each distribution. In the
first smoothing, preserve only the first two univariate moments (means and
standard deviations) and the first bivariate moment (the correlation between
the sub-form and the anchor test). In the second smoothing, preserve these
moments and also the third univariate moments (skewness). In the third
smoothing, preserve also the fourth univariate moment (kurtosis). We will
refer to these smoothings as the "two-moment" smoothing, the "three-moment"
smoothing, and the "four-moment" smoothing.

4
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4. In each pair of samples, perform a chained equipercentile equating of Form

A to Form B through the anchor test, by equatlng Form A to the anchor test in

the "Form A" sample and equating the anchor test to Form B in the "Form B"

sample. Use the unsmoothed distributions in these equatings.

5. Repeat Step 4, but use the distributions created by the four-moment

smoothing.

6. Repeat Step 5, but use the distributions created by the three-moment

smoothing.

7. Repeat Step 6, but use the distributions created by thd two-moment

smoothing.

This procedure was replicaten 50 times at each of the four specified sample

size levels.

TNEmmata

A statistic that provides a good indication of the overall accuracy of

an estimation procedure is the root-mean-squared deviation (RMSD) of the

estimates from the quantity to be estimated. In this case, the quantity to be

estimated is the equated scc,re on Form B that corresporm3 to a given raw

(number-correct) score on Form A, as determined by the direct equipercentile

equating in the full population of test-takers. Figure 3a shows the accuracy

of the equating in the samples of 200 test-takers. The accuracy statistic is

the conditional RMSD, conditioned on the score to be equated and computed over

the 50 replications of the equating experiment. (See Formula 1 in the

Appendix.) The conditional RMSD is shown as a function of the raw score on

Form A, for each of the four degrees of smoothing. The conditional RMSD is

expressed in terms of points on the raw-score scale of Form B, the form to

wh!ch Form A is being equated. One point is about one-tenth of the population

standard deviation.

In Figure 3a, notice that the line representing the equating based on

unsmoothed distributions does not extend to the ends of the score range. The

reason is that in many of the samples, the unsmoothed dis v:',butions did not

extend over the full range of scores, and the equipercercile equating

relationship was undefined at the ends of the score r4zse. The conditional

RMSD is shown on the graph only for those score le, 11, for which tle

conversion was defined in at least 45 of the 50 nilt ations of the equating.

This problem did not occur with the equating of the smoothed distributions,

because the smoothed distributions extended over the full score range even

when the unsmoothed distributions did not. Consequently, the equating of

these distributions was defined over the full score range, and the conditional

RMSD could be computed for all scores oherved in the population.

Figure 3a shows that even with samples of 200 examinees, both the three-

moment and four-moment smoothings provide a substantial improvement over the

equating of unsmoothed distributions, as indicated by the smaller conditional

RMSD of the sample equating from the population equating. The three-moment

smoothing produced more accurate results than the four-moment smoothing in the

5



very high and very low portivrts of the score range, where the data tend to be
sparse, and performed about as well as the four-moment smoothing in the rest
of the score range. The equating based en the two-moment smoothing appears to
have been about as accurate as the equating based on unsmoothed distributions.

Figure 3b shows the results for the samples of 100 examinee2. All three
smoothings appear to offer some degree of improvamen* ever the equating of
unsmoothed distributions; the three-moment and four-oment smoothings offer a
substantial improvement throughout the score range. The three-moment
smoothing appears to perform slightly better than the four-moment smoothing,
particularly at the extremes of the score range.

Figure 3c shows the results for the samples of 50 examinees. All three
smoothings produced a substantial improvement over the equating of unsmoothed
distributions. The improvement produced by the smoothing was greater with
samples of 50 examinees than with the larger, samples, as might be expected.
Again, the three-moment smoofhing appears to produce the best results.
Throughout most of the score range, it reduced the conditional RMSD by about
one-third, as compared with the equating of unsmoothed distributions.

Figure 3d shows the results for the samples of 25 examinees. The
improvement produced by smoothing was greater still, for all the smoothings.
The two-moment and three-moment smoothings appear to work about equally well
-- and somewhat better than the four-moment smoothing -- throughout most of
the score range. The three-moment smoothing performed slightly better than
the two-moment smoothing in the middle of the range; the two-moment smoothing
performed better at the high end of the range.

Figures 3e, 3f, and 3g each compare two of the conditional RMSD curves
from Figures 3a-3d. Figure 3e shows the conditional RMSDs for the equating in
samples of 200 examinees without smoothing and in samples of 100 examinees
with the three-moment smoothing. Figure 3f shows the same comparison for the
samples of 100 examinees without smoothing and samples of 50 examinees with
the three-moment smoothing. Figure 3g shows the same comparison for the
samples of 50 examinees without smoothing and samples of 25 examinees with the
three-moment smoothing. The-te comparisons show that the three-moment
smoothing produces a greater increase in accuracy than could be achieved by
doubling the size of the samples of examinees.

The results described above were obtained by conditioning on the score
level kon the test to be equated) and computing the conditional RMSD over the
fifty replications of the equating procedure. Another way to look at the data
is to compute an RMSD over all score levels for each replication of the
equating. This overall RMSD is computed over the population of test-takers.
(See Formula 2 in the Appendix.) Figure 4 shows the distributions, over the
fifty replications, of this RMSD, for each combination of sample size and
smoothing method. The means and standard deviations of these distributions
are shown in Table 1. Notice that the overall RMSD is not shown for the
equatings of unsmoothed distributions. To compute the overall RMSD, it is
necessary that the equated score he defined for all the test-takers in the
population. In general, the equating based on the unsmoothed sample score

6



distributions did not produce equated scores for the test-takers with the

highest and lowest scores. Therefore, the overall RMSD could not be computed.

Figure 4 shows the tendency of the RMSD to decrease as the sample size

increases. It also shows the extent to which the accuracy of the equating

tended to vary as a result of the sampling of ex.minees, and how this

variation decreased as the sample size increased. However, our main interest

is in the comparison of the three smoothings. With samples of 25 examinees,

the two-moment and three-moment smoothings appear to have produced somewhat

more accurate results than the four-moment smoothing. With samples of 50 and

100 examinees, the three-moment smoothing produced the most accurate results.

With samples of 200 examinees, the three-moment smoothing still produced the

best results, although the four-moment smoothing performed nearly as well.

These conclusions from the graphs in Figute 4 are corroborated by the means

shown in Table 1.

It is possible to look at the results in more detail, by conditioning on

a single score on Form A and lookitg, at the results of the individual

replications of the equating procedure. Each replication produced an equated

score which can be considered an estimate of the equated score produced by the

direct population equating. If the anchor equating in the samples of

examinees were exactly correct at this score level, it would produce the same

result as the direct equating in the population; the difference between the

results of the two equatings (sample and population) would be zero. If the

equating procedure is highly accurate at the specified score level, these

differences will be tightly clustered around zero.

Figure 5a shows distributions of the difference between the sample and

population equatings in determining the score on Form B that corresponds to a

score of 20 on Form A. Each of these conditional distributions contains fifty

data points, one for each replication of the equating. There is a separate

distribution for each combination of sample size and smoothing method. The

distributions in Figure 5a are conditional distributions because they apply

only to score level 20 on Form A. Figures 5b-5e show similar distributions

for other score levels: 25, 30, 35, and 40. Table 2 shows the mean and

standard deviation of each of the conditional distributions in Figures 5a-5e.

The mean of the conditional distribution can be interpreted as the

empirically determined bias of the equating procedure at that score level.

The standard deviation indicates the sampling variability of the equated

score.

The most obldous (and least surprising) feature of the distributions in

Figures 5a-5e is the decrease in the spread of the distribution as the sample

size increases. The distributions also show the extent to which smoothing

tended to improve the accuracy of the equating, offering a greater improvement

when the samples were smaller.

A more interesting feature of these distributions concerns the two-

moment smoothing; it appears to introduce a consistent bias into the equating.

The equatings based on the two-moment smoothing tended to produce equated

scores that were too low at scores 25 and 30 (Figures 5b and 5c) and too high

at score 40 (Figure 5e). This is the same kind of bias that would have been

7
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introduced by a linear equating method (which also uses only two moments of
each distribution to determine the equating relationship). Preserving the
third moment of the distributions greatly reduced this bias, at very little
cost in terms of increased variation over replications, as can be seen in
Table 2. Preserving the fourth moment tended to eliminate the bias, but the
sampling variability of the equating results in the smaller samples (25 and
50) increased substantially at the lower score levels (20, 25, and 30).

Figure 6 provides a clearer illustrati,n of the bias introduced by tL1
smoothings that preserve fewer than four moments of the unsmoothed
distributions. This graph shows the bias, at each score level, in the
equatings based on samples of 20 examinees. Note the large bias in the
results of the two-moment smoothing and the much smaller bias, in the same
direction, in the results of the three-moment smoothing. In contrast, notice
how closely the results of the four-moment smoothing follow those of the
equatIlgs based on the unsmoothed distributions, with very little bias.

Discussion

The smaller the sample, the more it is likely to differ from the
population. Therefore, the benefits of smoothing are greatest when the sample
is small. For the same reason, smaller samples call for smoothing methods
that preserve fewer characteristics of the observed data. For smoothing test
score distributions by the log-linear method, the issue is how many moments of
the observed distribution to preserve in the smoothed distribution. To
preserve too few moments is to lose some of the information contained in the
sample. But if the sample moments are far enough from the corresponding
population moments, preserving them may do more harm than good.

A statistician might claim that samples as small as 25 are too small for
accurate estimation of the third moment (skewness) of the population
distribution. However, in this application of log-linear smoothIng,
preserving the third moment of the observed distributions improved the
accuracy of the equating results, even in the samples of 25 examinees.

It might then seem that with samples of 200 examinees, preserving the
fourth moment of the observed distributions would improve the accuracy of the
equating (in comparison with preserving only three moments). In this study,
preserving the fourth moment in samples of 200 examinees did not improve the
overall accuracy of the equating, but it did remove a small bias that was
present in the equating results based on three-moment smoothing. Systematic
bias can be more harmful than the same amount of random error when equating
results are linked to maintain a score scale through several forms of a test.
The danger is that if the difficulty of the test increases (or decreases)
steadily over several test forms, the bias in the equating will be in the same
direction each time and will tend to accumulate. The result will be "scale
drift".

One feature of equatings based on distributions produced by log-linear
smoothing is that, like linear equatings, they span the full range of
possible scores, extending beyond the highest and lowest scores observed in
the samples. But how accurate are the equatings in these regions beyond the

8
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data? Figures 3a to 3d suggest that, for any given sample size, the equatings

based on the three-moment smoothings are at least as accurate at the high end

of the distribution, where data are sparse or absent, as the equatings based

on unsmoothed distributions are in the middle region, where there is plenty of

data. At the extreme low end of the score range, the RMSD becomes fairly

large even for the smoothed distributions, especially when the sample size is

small. However, in this region, the equating based on unsmoothed

distributions cannot be computed in most of the samples. A user who needed to

determine an equating in this range would have some alternatives: extrapolate

from the equating based on unsmoothed distributions, use a linear equating, or

assign converted scores arbitrarily. None of these alternatives seems

preferable to the use of the equipercentile equating based on smoothed

distributions.

Do the results of this study justify the equating of test forms by the

chained equipercentile method in samples as small as 50 or even 25? The

overall RMSD of the equating based on samples of 25 examinees was about 0.15

standard deviations; for the samples of 50 examinees, it was about 0.10

standard deviations. However, the kMSD in the extremes of the score range was

mudh larger than the overall RMSD. Whether thczsa results are acceptable

depends on a number of factors, including the range of scores over which

accuracy is required, the availability of larger samples (and the cost of

obtaining them), and the probable consequences of reporting scores that are

not equated. The results of this study indicate that, whatever degree of

accuracy is required, log-linear smoothing makes it possible to equate test

forms with samples of about half as many examinees as would be required if no

smoothing were done.

It seems appropriate to close with a word of caution. The present study

involved one test, one population of examinees, and one equating method --

hardly a basis for any sweeping conclusions. It seems reasonable to expect

that similar studies with different tests and examinee populations would tend

to corroborate these results. Generalizing to another method of equating

(e.g., by frequency estimation) would be more speculative, although it seems

likely that the results of similar studies with a different equating method

would follow a similar pattern. In the meantime, the results of this study

can serve as a guide to those who must equate test scores on the basis of data

from small samples of examinees.

9
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Table 1.

Mean and standard deviation, over 50 replications, of the
overall RMSD of sample equatings from the population equating.

Sample size
-----LMS2thinP0----
4-moment 3-moment 2-moment

25 Mean 1.69 1.47 1.51
S.D. 0.49 0.48 0.37

50 Mean 1.28 1.05 1.24
S.D. 0.58 0.54 0.36

100 Mean 0.89 0.80 1.07

S.D. 0.29 0.28 0.19

200 Mean 0.58 0.56 0.98
S.D. 0.29 0.28 0.15



Table 2.

Summary statistics for conditional distributions of differences
between sample and population equatings.

Score on
Form A

Sample
Size

Smoothing
Method

Mean Standard
Deviation

20 25 Unsmoothed -.22 3.03

Four-moment +.14 1.83

Three-moment +.35 1.44

Two-moment +.29 1.43

50 Unsmoothed -.44 2.18

Four-moment -.35 1.53

Three-moment -.06 1.29

Two-moment -.10 1.20

100 Unsmoothed -.12 1.40

Four-moment +.04 0.97

Three-moment +.15 0.82

Two-moment +.02 0.77

200 Unsmoothed -.08 1.04

Four-moment -.15 0.71

Three-moment -.01 0.70

Two-moment -.09 0.65

25 25 Unsmoothed -.28 2.24

Four-moment +.10 1.45

Three-moment -.18 1.16

Two-moment -.47 1.16

50 Unsmoothed +.04 1.65

Four-moment +.06 1.21

Three-moment -.2/ 0.91

Two-moment -.75 0.85

100 Unsmoothed -.10 1.15

Four-moment +.02 0.83

Three-moment -.21 0.70

Two-moment -.68 0.60

200 Unsmoothed -.08 0.71

Four-moment -.03 0.58

Three-moment -.28 0.54

Two-moment -.79 0.49



Table 2 (continued).

Summary statistics for conditional distributions of differences
between sample and population equatings.

Score on
Form A

Sample
Size

Smoothing
Method

Mean Standard
Deviation

30 25 Unsmoothed 4-.27 2.01

Four-moment +.16 1.28

Three-moment -.19 1.09

Two-moment -.47 1.10

50 Unsmoothed +.32 1.14

Four-moment +.29 0.85

Three-moment -.14 0.70

Two-moment -.63 0.66

100 Unsmoothed +.06 0,99

Four-moment +,05 0.69

Three-moment -.18 0.62

Two-moment -.62 0.55

200 Unsmoothed +.03 0.65

Four-moment +.05 0.49

Thrc:: moment -.22 0.43

Two-moment -.73 0.39

35 25 Unsmoothed -.08 1.90

Four-moment +.03 1.20

Three-moment +.06 1.17

Two-moment -.04 1.20

50 Unsmoothed +.15 1.10

Four-moment +.16 0.74

Three-moment +.09 0.72

Two-moment -.07 0.76

100 Unsmoothed -.01 0.84

Four-moment -.02 0.63

Three-moment -.03 0.60

Two-moment -.12 0.64

200 Unsmoothed -.06 0,63

Four-moment -.03 0.41

Three-moment -.07 0.38

Two-moment -.21 0.39



Table 2 (continued).

Summary statistics for conditional distributions of differences
between sample and population equatings.

Score on
Form A

40

Sample
Size

25

50

100

200

Smoothing
Method

Unsmoothed
Four-moment
Three-moment
Two-moment

Unsmoothed
Four-moment
Three-moment
Two-moment

Unsmoothed
Four-moment
Three-moment
Two-moment

Unsmoothed
Four-moment
Three-moment
Two-moment

Mean

+.04*
+.14

+.49
+.71

+.28

+.07
+.39

+.81

-.01
+.00
+.25
+.72

+.01

-.06
+.18
+.65

Standard
Deviation

2.28*
1.39

1.47

1.35

1.54
1.03

0.99
0.99

0.96
0.73
0.71
0.76

0.64
0.38
0.39
0.45

*Based on only 48 replications; the equating transformation was undefined in
two of the 50 replications.



APPENDIX

Formulas for the Root-Mean-Squared Deviation

Let j index the pairs of samples of a given size: j 1, 2, ... , 50.

Let x represent a score on Form A.

Let N. represent the number of test-takers in the population with score x.

Let y. represent the score on Form B that equated to x in the direct equating
in the population.

A
Let yxj represent the score on Form B that equated to x in the anchor

equating in the jth sample.

1. The conditional RMSD at score x (as in Figures 3a-3d) is computed by

1 'Z--.N0RMSD (X) = (2 y ) 2
5 0 j=1 X

2. The overall RMSD for the jth replication (as in Figure 4) is computed by

RMSD =
Ex Aix (57')Q YX) 2

ivx



Figure 1. Illustration of the Chained Equipercentile
Method of Equating.

Sample 1

Form A

Anchor Test

Anchor Test

Form B

2



55

50

45

40

35

30

25

20

15

10

5

0

/

Figure 2.

Results of direct equating of Form A to Form B
in the full population.

Linear

Equipercentile

.qg-----
.011E-----

o.-
1 1 1 1 1 I --I-

Number of test takers
at each score level:

:::::,' .' '...:::,:',' '.-i..:.

:-.'........12f0:::............,........: .......'

: -....:...
-.

::::::'.::.:.
.. . . .:- . . . ..

.,..:,.:........

1
:. . . . .......

0 5 10 15 20 25 30 35 40 45 50 55

Form A
2112



Figure 3. Conditional root-mean-square difference (RMSD) of sample equating
(through common-item anchor) from population equating, over 50
replications of the equating procedure.
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Figure 3 (continued). Conditional root-mean-square difference (RMSD)

of sample equating (through common-item anchor) from population

equating, over 50 replications of the equating procedure.
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Figure 3 (continued). Conditional root-mean-square difference (RMSD)
of sample equating (through common-item anchor) from population
equating, over 50 replications of ehe equating procedure.
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Figure 5a.

Deviation of Each Sample (Anchor) Equating From Population Equating
At Raw Score 20 on Form A *
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Figure 5b.

Deviation of Each Sample (Anchor) Equating From Population Equating
At Raw Score 25 on Form A *
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Figure Sc.

Deviation of Each Sample (Anchor) Equating From Population Equating
At Raw Score 30 on Form A *
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Figure 5d.

Deviation of Each Sample (Anchor) Equating From Population Equating
At Raw Score 35 on Form A *
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Figure 5e.

Deviation of Each Sample (Anchor) Equating From Population Equating
At Raw Score 40 on Form A *
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